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Current-induced spin polarization �CISP� is rederived in ballistic spin-orbit-coupled electron systems, based
on equilibrium statistical mechanics. A simple and useful picture is correspondingly proposed to help under-
stand the CISP and predict the polarization direction. Nonequilibrium Landauer-Keldysh formalism is applied
to demonstrate the validity of the statistical picture, taking the linear Rashba-Dresselhaus �001� two-
dimensional system as a specific example. Spin densities induced by the CISP in semiconductor heterostruc-
tures and in metallic surface states are compared, showing that the CISP increases with the spin-splitting
strength, and hence suggesting that the CISP should be more observable on metal and semimetal surfaces due
to the discovered strong Rashba splitting. An application of the CISP designed to generate a spin-Hall pattern
in the in-plane, instead of the out-of-plane, component is also proposed.
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I. INTRODUCTION

The aim of preparing and controlling spins in all-electrical
nonmagnetic devices has been shown to be possible in semi-
conducting bulk and two-dimensional electron systems
�2DESs�.1,2 Besides the optical spin injection, a much more
natural way of spin orientation is to make use of the spin-
orbit �SO� coupling due to the lack of inversion symmetry of
the underlying material.3 When passing an unpolarized elec-
tric current �electrons carrying random spins� through an SO-
coupled material, spin-dependent consequences arise, among
which two famous phenomena are the spin-Hall effect �SHE�
�Refs. 4–9� and the current-induced spin polarization �CISP�.

In the CISP phenomenon, unpolarized electric current is
expected to be spin polarized when flowing in a SO-coupled
sample. This effect was first theoretically proposed in the
early 90s. Edelstein10 employed linear-response theory to
calculate the spin polarization due to an electric current in
the presence of SO coupling linear in momentum, taking into
account low-concentration impurities. Aronov and
Lyanda-Geller11 solved the quantum Liouville’s theorem for
the spin-density matrix to show the CISP, taking into account
scattering as well. Recently, the CISP phenomenon has been
experimentally proven.12–14 Moreover, both the SHE and
CISP have been observed at room temperature.15

In this paper we propose another viewpoint based on
equilibrium statistical mechanics to explain the CISP in the
absence of impurity scattering for both bulk and two-
dimensional systems. We show that the canonical ensemble
average �CEA� of electrons moving with a wave vector k
immediately prescribes a spin polarization antiparallel to the
effective magnetic field Beff�k� stemming from the underly-
ing SO coupling not necessarily linear in k, and hence ex-
plains the CISP. Correspondingly, a much simpler picture,
compared to the early theoretical works of Refs. 10 and 11,
helps provide a qualitative and straightforward explanation
for the CISP: In an SO-coupled 2DES without external mag-
netic field, an ensemble of rest electrons is unpolarized while
it becomes spin-polarized antiparallel to Beff�k� when mov-
ing along k �see Fig. 1�.

To demonstrate the validness of this elementary statistical
argument, spin and charge transports in finite-size four-

terminal conducting 2DESs with Rashba and linear Dressel-
haus �001� SO couplings are numerically analyzed using the
more sophisticated Landauer-Keldysh formalism �LKF�,16–18

allowing for nonequilibrium statistics. Good agreement be-
tween the analytical CEA and the numerical LKF will be
seen, consolidating our statistical picture. In addition to the
semiconducting heterostructures, we also extend the analysis
of the CISP to metal and semimetal surfaces, and compare
the polarization strengths. Finally, an application of the CISP,
resembling an in-plane SHE, will be subsequently proposed.
Throughout this paper, all the band parameters used in the
LKF are extracted from experiments by matching the band
structures calculated by the tight-binding model �and hence
the density of states calculated by the LKF� with the experi-
mentally measured ones.19

This paper is organized as follows. In Sec. II, we discuss
the general properties of the system with SO coupling and
derive the CISP in the ballistic limit using statistical mechan-
ics. In Sec. III the LKF is applied partly to examine the
validity of the statistical picture of the CISP introduced in
Sec. II, and partly for further investigation. Summary of the
present work will be given in Sec. IV.

II. ANALYTICAL DERIVATIONS

Consider a SO-coupled system, subject to the single-
particle Hamiltonian

k

Beff(k)

[S]k

Unpolarized rest
electron ensemble

Spin−polarized moving
electron ensemble

FIG. 1. �Color online� Statistical picture of the current-induced
spin polarization phenomenon.
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H =
�2k2

2m
1 + S · �� �k� , �1�

where m is the effective mass, 1 is the 2�2 identity matrix,
S= �� /2��� is the spin operator, �� ���x ,�y ,�z� being the

Pauli-matrix vector, and �� �k�= �e /mc�Beff�k� is the
momentum-dependent Larmor frequency vector, with Beff�k�
being the effective magnetic field stemming from the SO
coupling.20

A. Larmor frequency vectors

For III–V �zinc blende� bulk semiconductors,21 the Lar-
mor frequency in Eq. �1� is written as22

�� �k� =
��2

�2m3Eg�1/2�� , �2�

where � is a dimensionless parameter specifying the spin-
orbit coupling strength, Eg is the band gap, and �� is given by

�� = �kx�ky
2 − kz

2�
ky�kz

2 − kx
2�

kz�kx
2 − ky

2�
� . �3�

Here ki’s are the wave vector components along the crystal
principle axes.

When restricted to two-dimension, the component of the
wave vector normal to the 2DES is averaged. For �001�
quantum wells, one has kz

2→ �kz
2	 and kz→ �kz	= �i�z	=0 to

rewrite Eq. �3� as k��001�= �kx�ky
2− �kz

2	� ,ky��kz
2	−kx

2� ,0�, so that
the Larmor frequency �2� takes the form

�� �001� =
2�

�
�− kx,ky,0� +

2�

��kz
2	

�kxky
2,− kykx

2,0� , �4�

where � is defined by

� =
�

2

��2

�2m3Eg�1/2 �kz
2	 = 	�kz

2	 , �5�

and is referred to as the Dresselhaus SO coupling constant.
The 	 parameter �corresponding to b41

6c6c of Ref. 3� is mate-
rial dependent, and is roughly 27 eV Å3 for both GaAs and
InAs.3,23

The first term in Eq. �4�,

�� D
�001� =

2�

�
�− kx,ky,0� , �6�

is the linear Dresselhaus �001� term, which will dominate for
small k region. The corresponding SO term HD

�001�

=S ·�D
�001�=��−kx�

x+ky�
y� is known as the linear Dressel-

haus �001� model Hamiltonian.3,20 With larger k the second
term in Eq. �4�—the k3 term—becomes important. We will
come back to this later. For other quantum wells such as
�110� and �111�, the �� vector given by Eq. �3� can be recast
into a form that depends on the growth direction n̂ of the
2DES.24 �See also Ref. 20.�

When writing the Larmor frequency vector as

�� R =
2


�
�k � n̂� , �7�

the linear Rashba model Hamiltonian3,20,25 HR=S ·�� R=
�k
� n̂� is recovered. Here 
 is the Rashba SO coupling con-
stant.

B. Time-reversal symmetry

Before deriving the CISP, we provide the following two
intrinsic properties of the Hamiltonian �1�. First, we show
that the contribution to the SO terms in solid is odd in k due
to time-reversal symmetry, which is also remarked in Ref. 3.
For spin-1/2 systems subject to Hamiltonian �1�, the energy
dispersion can be written as

E��k� = E0 + ��k, �8�

where E0=�2k2 /2m is the kinetic energy, �= �1 is the spin
state label, and �k is the spin splitting due to SO coupling. In
the absence of external magnetic field, the time-reversal
symmetry is preserved, resulting in E+�k�=E−�−k� or

+ �k = − �−k, �9�

which implies that nonvanishing spin splitting �k is odd in k.
Note that Eq. �9� also implies

�� �− k� = − �� �k� , �10�

which agrees with our intuition. Apparently, Eq. �10� is
obeyed by all the previously reviewed Larmor frequency
vectors.

Second, we show �� ,k
�� 
� ,k	=−�
 ,k
�� 

 ,k	, where

� ,k	 is the eigenstate of Hamiltonian �1�. We begin with the
Schrödinger equation,

H
�,k	 = ��2k2

2m
1 + S · �� �k��
�,k	 = E��k�
�,k	 . �11�

Comparing Eq. �11� with Eq. �8�, we deduce S ·�� �k�
� ,k	
=��k
� ,k	 or

��,k
S · �� �k�
�,k	 = ��k, �12�

where 
� ,k	 is assumed normalized. This implies

�+ ,k
S · �� �k�
+ ,k	 = − �− ,k
S · �� �k�
− ,k	 . �13�

Factoring out and canceling �� �k� on both sides, we arrive at

�+ ,k
�� 
+ ,k	 = − �− ,k
�� 
− ,k	 . �14�

Equation �14� is a general property of Eq. �1� and is valid for
systems with dispersions E��k�=E0+��k, where the spin
splitting �k is not necessarily linear in k. This property �14�
will play a tricky role in the coming derivation of the CISP
based on statistical mechanics in Sec. II C.

Note that Eq. �14� is also a consequence of time-reversal
symmetry �9�, as one can easily prove as follows. Using Eq.
�12� we rewrite Eq. �9� as

�+ ,k
S · �� �k�
+ ,k	 = �− ,− k
S · �� �− k�
− ,− k	 . �15�

Equation �12� also implies
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��,k
S · �� �k�
�,k	 = − �− �,k
S · �� �k�
− �,k	 �16�

when one regards ��k as −�−���k. In addition, Eq. �9� im-
plies

��,k
S · �� �k�
�,k	 = ��,− k
S · �� �k�
�,− k	 �17�

because of

��,k
S · �� �k�
�,k	

= ��k

= − ��−k

= �− �,− k
S · �� �− k�
− �,− k	

= − ��,− k
S · �� �− k�
�,− k	 �18a�

=��,− k
S · �� �k�
�,− k	 , �18b�

where Eqs. �16� and �10� are used in �18a� and �18b�, respec-
tively. Substituting Eqs. �10� and �17� into Eq. �15�, we ob-
tain Eq. �13�, and hence the property �14�.

C. Current-induced spin polarization by canonical ensemble
average

Having seen the general properties of the Hamiltonian �1�
under the time-reversal symmetry, we now derive the equi-
librium statistics version of the CISP. In quantum statistics,
any physical quantity, say A, is expressed in terms of the
quantum statistical average �A�=Tr��A�. Adopting the ca-
nonical ensemble, the average reads

�A� =
Tr�e−H/kBTA�


�
e−E�/kBT

, �19�

where kB is the Boltzmann constant, T is temperature, � is a
quantum number labeling the states, and E� is the eigenen-
ergy of state � solved from Hamiltonian H.

Now consider an unpolarized electron ensemble in a
2DES, subject to Hamiltonian �1�. Our main interest here is
the CEA of the spin operators of an ensemble of electrons,
subject to an identical wave vector k. By this we mean that
the summation in Eq. �19� runs over the spin index � only.
This gives

�S�k =
�

2

Tr�e−H/kBT�� �


�=�
e−E��k�/kBT

.

Choosing the basis 
� ,k	 for the trace, one is led to

�S�k =
�

2


�
e−E��k�/kBT��,k
�� 
�,k	


�
e−E��k�/kBT

.

Using the property �14� and factoring out e−�2k2/2mkBT from
e−E�/kBT, we arrive at the general expression

�S�k = −
�

2
tanh

�k

kBT
�+ ,k
�� 
+ ,k	 . �20�

To re-express Eq. �20� in terms of the effective magnetic
field Beff�k�, defined by

Beff�k� �
mc

e
��k� =

�

2
��k�

�B
, �21�

we rewrite Eq. �12� with �= +1 as

�+ ,k
�� 
+ ,k	 · Beff�k� =
�k

�B
. �22�

Noting �� ,k
�� 
� ,k	=1 �unit vector� and 
�� /2���k�
=�k,
Eq. �22� implies

�+ ,k
�� 
+ ,k	 = B̂eff�k� , �23�

i.e., the direction of the effective magnetic field. Therefore,
Eq. �20� can be written as

�S�k = −
�

2
tanh

�k

kBT
B̂eff�k� , �24�

which is exactly the analog of the CEA of electron spin in
vacuum subject to an applied magnetic field.26

Equation �24� now has a transparent meaning: In the pres-
ence of SO coupling, an ensemble of rest electrons �k→0� is
unpolarized since �k→0=0 while it becomes spin-polarized

antiparallel to B̂eff�k� when moving along k. This picture is
schematically shown in Fig. 1. Moreover, the hyperbolic tan-
gent factor tanh��k /kBT� clearly predicts the decrease with T
and the increase with �k in the polarization magnitude, and
therefore explains two signatures of the CISP qualitatively:
�i� The CISP may persist up to the room temperature. Taking
�k�3.68 meV from Ref. 14, one has tanh��k / �kB
�300 K�� / tanh��k / �kB�10 K���14%. �ii� As �k	�V0
�Ref. 13� implies �k�V0, the magnitude of the CISP gov-
erned by tanh��k /kBT� is supposed to increase with the bias,
as is experimentally proven.12

D. Explicit forms of current-induced spin polarization

From Eq. �24�, it is now clear that the direction of the
CISP is given by the effective magnetic-field direction

B̂eff�k�. Alternatively, one can use the direction of the Lar-

mor frequency vector, �̂�k�, to describe the CISP direction

since Beff�k� and �� �k� are, by definition of Eq. �21�, collin-
ear. Therefore, the CISP direction in III–V bulk semiconduc-
tors is given by Eq. �3�.

For 2DES grown along �001� with Dresselhaus terms up
to the k3, Eq. �4� describes the effective magnetic field shown
as Fig. 2, which simulates a 100-Å-thick InGaAs quantum
well with �kz

2	=3.6�10−4 Å−2 �Ref. 3�. The CISP direction
is opposite to the effective magnetic field. Note that in Fig. 2,
the field distribution near the central region �small k� is
dominated by the linear term �6� �cf. the right inset of Fig. 3�.

In the rest of this paper, we focus on the Rashba and
linear Dresselhaus �001� terms. For effects with full SO
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terms in the Rashba-Dresselhaus systems, see Refs. 3 and 27.
The composite Larmor frequency vector can be obtained by
adding Eq. �6� with n̂= �0,0 ,1� and Eq. �7� together,

�� RD
�001� = �� R�n̂ = ẑ� + �D

�001� =
2

�
�
�ky,− kx,0� + ��− kx,ky,0�� .

�25�

The spin-splitting linear in k takes the form �k= 
�
k with �
= i
e−i�+�ei�. Thus the CISP in linear Rashba-Dresselhaus
�001� 2DESs is explicitly given by

�S�k
RD001 = −

�

2
tanh


�
k
kBT

�̂RD
�001�. �26�

E. Remark on effective mass

In general, the in-plane effective mass m of the electrons
is not constant but depend strongly on k for realistic semi-
conductor systems. However, in the long-wavelength limit
kFa�1 �kF and a the Fermi wave vector and lattice constant,
respectively�, the effective mass, defined by the inverse of
the second derivative of E�k� /�2 with respect to k, is a con-
stant due to the parabolic nature of E�k� solved from Hamil-
tonian �1�. In this limit, even though the band structure can
be anisotropic due to the interplay between different SO cou-
plings �such as Rashba plus linear Dresselhaus �001��, the
effective mass remains constant. In the present analysis, we
work in this kFa�1 limit, within which the Hamiltonian �1�
is valid. Interestingly, our CEA formulas such as Eq. �24� do
not contain the dependence of m.

Away from kFa�1 region, the energy dispersion is no
longer parabolic, and the free-electron-like model Hamil-
tonian �1� and hence the follow-up derivations fail. Analysis
of the CISP phenomenon requires other formalisms, such as

the LKF, to be employed in the coming section. Neverthe-
less, we will not look further into the influence of the
k-dependent effective mass on the CISP.

III. NUMERICAL RESULTS: LANDAUER-KELDYSH
FORMALISM

To inspect the validity of the previously proposed statis-
tical picture and further examine the CISP, we now perform
local spin-density calculation in finite-size 2DESs attached to
four normal metal leads by using the LKF.16–18

A. Local spin densities in extreme Rashba and Dresselhaus
[001] cases

As a preliminary demonstration, Fig. 3 shows the
position-dependent in-plane spin vectors �S	�

r= ��Sx	r , �Sy	r�,
with the local spin densities �Sx	r and �Sy	r calculated by the
LKF. Here we adopt the finite-difference method and dis-
cretize the 30a�10a channel, made of InGaAs/InAlAs
heterostructure28 grown along �001�, into a square lattice
with lattice spacing a=1 nm. Accordingly, this gives the ki-
netic and Rashba hopping strengths t0��2 /2ma2

=0.762 eV and tR�
 /2a=3.6 meV, respectively. For the
Dresselhaus SO coupling, we again assume the quantum well
thickness d=100 Å and �kz

2	��� /d�2, and use 	
�27 eV Å3 to give �see Eq. �5�� �=	�kz

2	�2.66
�10−2 eV Å, resulting in the Dresselhaus hopping strength
tD�� /2a=1.33 meV.

Let us first consider the extreme cases: pure Rashba and
pure Dresselhaus �001� channels. As expected, the spin vec-
tors are mostly oriented antiparallel to Beff�k�, which is, for
k � x̂, pointing to −ŷ in the Rashba channel �Fig. 3�a�/3�c�
with low/high bias, respectively� and −x̂ in the Dresselhaus
�001� channel �Fig. 3�b�/3�d� with low/high bias, respec-
tively�. Here �and hereafter� the low and high biases mean
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FIG. 3. �Color online� Spin orientation in a 30a�10a channel
with a=1 nm. Channels with linear Rashba model are considered
in �a� and �c� while those with linear Dresselhaus �001� model are in
�b� and �d�. The direction of each sharp triangle represents the in-
plane spin vector �S	� = ��Sx	 , �Sy	� of the local spin density. The size
of the triangle depicts the magnitude of �S	�. Effective magnetic
fields due to individually the Rashba and the Dresselhaus �001�
fields are shown in the insets.
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(Å
−

1
)

FIG. 2. �Color online� Effective magnetic field of a 100-Å-thick
�001� InGaAs quantum well with �kz

2	=3.6�10−4 Å−2.
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eV0=2 meV and 0.2 eV, respectively, and we label the ap-
plied potential energy of �eV0 /2 as “�” and eV0=0 as “0”
on each lead. Note that the spin distribution, modulated by
the charge distribution, forms standing waves in the low-bias
regime since the electrons behave quantum mechanically
while that in the high-bias regime, i.e., the nonequilibrium
transport regime, decays with distance.19 The polarization in
the latter �high bias� is about two orders of magnitude stron-
ger than the former �low bias�.

B. Consistency check: Analytical canonical ensemble average
vs numerical Landauer-Keldysh formalism

We now consider a four-lead square channel with coexist-
ing Rashba and linear Dresselhaus �001� terms. The coupling
constants are set identical to those introduced previously. Re-
moving the four corner sites to avoid short circuit, the
sample size is �10�10−4�a2. To see if the CISP direction
follows the opposite effective magnetic field for all k direc-
tions, we change the current direction by applying different
bias configurations. As shown in Figs. 4�a�–4�d�, the elec-
trons flow from left to right, from left bottom to right top,
from bottom to top, and from right bottom to left top, respec-
tively. Other current directions are done in a similar way but
not explicitly shown here. In averaging the in-plane local
spin densities �Sx	r and �Sy	r over all the lattice points at r
within the conducting sample, we compare in the inset of
Fig. 4 �S�k

LKF���Sx	 , �Sy	� with the effective magnetic field

BRD
�001��k�= �� /2�B��� RD

�001��k�, where �� RD
�001��k� is given by Eq.

�25�. As expected by our statistical picture introduced in Sec.

II C, �S�k
LKF arrows are all opposite to �� RD

�001��k� for all k
directions despite some indistinguishably tiny differences.

Note that the additive and destructive effects between the

two SO terms are also observed at ��1̄10� and ��110�, re-

spectively. Along ��1̄10� ���110��, strongest �weakest� spin
splitting �k and hence the CISP magnitude �Eq. �24�� occur.
Note that here we apply low bias. With high bias the results
also agree perfectly with the CEA picture �not shown�.

C. Bias dependence of current-induced spin polarization

Having shown that the statistical argument indeed works
well, we next examine the bias dependence of the CISP,
which is expected to be a proportional relation, as has been
experimentally observed.12 We return to Rashba channels.
Spin densities, i.e., the total spin divided by the total area of
the conducting channel obtained via 
r�Sy	r / �Na2� here with
N being the number of total lattice sites in the conducting
sample, are reported in Fig. 5 for sample widths W
=10a ,20a ,30a. Sample length is set L=30a. Consistent to
the experiment, the calculated spin densities increase with
eV0. In addition, linear response within eV0�0.1t0
=0.076 eV is clearly observed in all cases. Nonlinearity en-
ters when eV0 grows so that nonequilibrium statistics domi-
nates. Note that the calculated local spin-density distribution
satisfies the usual SHE symmetry18 so that we have 
r�Sx	r
=
r�Sz	r=0 and 

r�S	r
=
r�Sy	r.

D. Comparison of current-induced spin polarization in
semiconductor heterostructures and metal/semimetal

surface states

Next we extend the calculation of the spin density due to
the CISP to other materials. In addition to semiconductor
heterostructures, 2DESs have been shown to exist also on
metal surfaces supported by the surface states.29 Due to the
loss of inversion symmetry, the metallic surfaces may exhibit
Rashba spin splitting as well.30,31 Here we consider three
samples: 54�18 nm2 InGaAs/InAlAs heterostructure, 14.7
�4.9 nm2 Au�111� surface, and 16.2�5.4 nm2 Bi�111� sur-
face. We arrange the lead configuration of all the three
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FIG. 4. �Color online� Local spin densities by LKF in a square
Rashba-Dresselhaus �001� channel with �a� left to right, �b� left
bottom to right top, �c� bottom to top, and �d� right bottom to left
top bias configurations. Bias regime belongs to low: eV0=2 meV.
Inset: �S�k

LKF vs BRD
�001��k� in the kx-ky coordinate.
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FIG. 5. �Color online� Bias dependence of spin densities in-
duced by the CISP in Rashba 2DESs.
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samples as those in Fig. 3 and apply high bias. The sizes we
choose here are to maintain roughly the same lattice site
number N�1000 and keep the length-width ratio �3. Note
that realistic lattice structure are considered for the surface
states �hexagonal for Au�111� and honeycomb for Bi�111�
bilayer�, while finite-difference method based on the long-
wavelength limit for the heterostructure is adopted. For in-
troductory reviews of those surfaces, see Ref. 32 for noble-
metal surfaces, including gold, and Ref. 33 for bismuth
surfaces.

Band parameters extracted from experiments and the spin
densities calculated by the LKF are summarized in Table I.
Clearly, the CISP increases with the Rashba parameter 
.
This suggests that the CISP �and actually also the SHE�
should be more observable on these surfaces. The recently
discovered Bi/Ag�111� surface alloy that exhibits a giant spin
splitting35 is even more promising but we do not perform
calculation for this interesting material here.

E. Application of current-induced spin polarization:
Generation of in-plane spin-Hall pattern

Finally, we propose an experimental setup, as an applica-
tion of the CISP, to generate an antisymmetric edge spin
accumulation in the in-plane component, i.e., an in-plane
spin-Hall pattern. For simplicity, let us consider a Rashba
2DES with the parameters for the LKF calculation taken the
same as those in Fig. 5. Sample size is about 30�30 nm2.
We apply high bias of eV0=0.2 eV and arrange a special
bias configuration.

As shown in Fig. 6�a�, unpolarized electron currents are
injected from the left and right leads, and are guided to the
top and bottom ones. Under such design, the spin accumula-
tion in �Sz	r exhibits merely a vague pattern �see Fig. 6�b��.
Contrarily, the pattern of �Sx	r shows not only antisymmetric
edge accumulation in the channel but also magnitude much
stronger than the out-of-plane component �see Fig. 6�c��.
This pattern is reasonably expected by the CISP due to the
opposite charge flows along �ŷ at the top and bottom edges,
and hence resembles an in-plane SHE.

In determining �Sy	r, Fig. 6�d� does not show a rotated
pattern from �Sx	r due to the nonequilibrium transport. In the
nonequilibrium transport regime, a distance apart from the
source leads is required to induce the CISP, and therefore no

significant �Sy	r is observed near the source �left and right�
leads. This can be seen by comparing the local spin-density
distributions in the low-bias and high-bias regimes shown in
Figs. 3�a� and 3�b�, and Figs. 3�c� and 3�d�, respectively.

IV. SUMMARY

In conclusion, we have rederived the CISP due to SO
coupling in the absence of impurity scattering based on equi-
librium statistical mechanics. Correspondingly, a simple pic-
ture �Fig. 1� valid for both bulk structures and 2DESs is
proposed to help qualitatively explain the CISP. Our expla-
nation for the spin polarization of the moving electron en-
semble in solid due to effective magnetic field is an exact
analog to that of the rest electron ensemble in vacuum due to
external magnetic field.26 The picture is further tested to
work well even in the regime of nonequilibrium transport in
finite-size samples by employing the numerical LKF. Ex-
tending the spin-density calculation from the semiconductor
heterostructure to metal and semimetal surface states, our
calculation confirms that the polarization increases with the
SO coupling strength, and hence suggests that the CISP
should be more observable on metal and semimetal surfaces
with stronger Rashba SO coupling.30,34,35 As an application
of the CISP, we also suggest an interesting bias configuration
for the four-terminal setup to generate in-plane SHE �Fig.
6�c��.
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TABLE I. Summary of effective-mass ratio m /m0, Rashba con-
stant 
, Fermi energy EF �relative to the band bottom Eb�, and the
calculated spin density due to CISP for a set of materials.

Material
InGaAs/InAlAs
�heterostructure�

Au�111�
�surface

state�

Bi�111�
�surface

state�

m /m0 0.050 0.251 0.340


 �eV Å� 0.072 0.356 0.829

EF−Eb �eV� 0.108 0.417 0.083

Reference 28 30 34

CISP �10−3 nm−2� 0.240 2.742 8.382
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FIG. 6. �Color online� Mapping of the �a� local charge current
density, and local spin densities �b� �Sz	, �c� �Sx	, and �d� �Sy	 in a
four-terminal square channel with a special bias arrangement. Unit
in �b�–�d� is � /2.
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